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Introduction: triads in social networks 
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What is a social network and why do social 

networks influence our life?

The power of transitive trriads
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Friendship network in a higher 

secondary school, N= 109, 

density=7.1%
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F. Heider’s balance theory: Two actors aim at cognitive 

balance regarding the evaluation of objects or persons
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balanced pattern – i und j both either like or 

dislike k

i j

k

i j

i j i j

k k

k

unbalanced pattern – i and j are jealous 

because of k, or j must explain i why j dislikes k
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friends of my 

friends are my 

friends …
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friends of my 

friends are my 
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friends of my 

friends are my 

friends …
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Friendship network in a higher 

secondary school, N= 109, 

density=7.1%

Random network, N= 109, 

density=7.1%

31.2% of all triads are transitive 6.6% of all triads are transitive
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Why do we observe so many transitive 

triads in the empirical world? 

two mechanisms: 

• Influence

• selective “survival” of friendships: 

Evolution

Prof. Dr. Michael Windzio
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Influence

Helena often brings 

her friend Maria. 

So Maria must be 

great. Hence, I 

should like Maria as 

well.

Helena

Maria

you

Prof. Dr. Michael Windzio 18

Selection

Oh dear, Helena

brings her friend 

Maria again! I think 

I should end my 

friendship with 

Helena

Helena

Maria

you
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Do you still believe that only you and your 

friend decided about your friendship?

Prof. Dr. Michael Windzio 20

Describing networks: local and global 

measures

Prof. Dr. Michael Windzio
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example 1: network of global migration/diaspora. Which countries are the most central 

receiving countries? Which factors determine in- and outdegree of a 

relevant proportion of hosting a sender’s population?

Again: theories highlight a broad set of factors. 

Multivariate regression, statistical non-independence of observations. 

Prof. Dr. Michael Windzio

Network of global migration 2013
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example 2: is there a preference for same-ethnic friendships in a class of 4th graders 

(ethnic homophily)? Or for same SES in the family (social homophily?)

social and ethnic homophily are correlated, so some sort of multivariate 

regression is required.

Prof. Dr. Michael Windzio
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Origins of social network analysis (SNA):

Sociometrics (sociology, social psychology, education) and graph theory (mathematics) 

Sociometrics: Jacob Moreno in the 1930ts, behavior is part “the whole” social fabric, 

according to Gestalt (“form”) theory. Social relationships displayed in a 

sociogram.

Mathematics: Leonhard Euler proofed in 1736 that the Königsberger bridge problem 

can’t be solved (walking through the city an using each bridge only 

once).

Famous today in transportation, chemistry, computer science, biology, 

complexity etc …

Prof. Dr. Michael Windzio 24

Basic concepts

Global measures of the network

regard the  network as a social system. Global statistics describe characteristics of the 

social system – which is composed of elements (nodes, edges)
− Density

− Size (number of actors)

− Centralization

− Topology

Structural features of the system, which result from the aggregation of individual decisions 

on creating, maintaining or dissolving ties (arcs or edges)

Local measures of nodes

Regard each node and describe its position or degree-related characteristics. 

− Degree: number of a nodes’ edges, 

− Indegree: number of nodes’ incoming arcs

− Outegree: number of nodes’ outgoing arcs

Knoke & Yang (2008), Prell (2012), Scott (2000)

Prof. Dr. Michael Windzio
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Basic concepts

network, graph: set of nodes (vertices, actors) and their relations (ties)

ties: undirected = edge (in a “graph”) directed = arc (in an “digraph”)

dyad: a pair of nodes. Is there a tie between these nodes?

triad: a subset of three nodes, many different types. 

transitivity: hierarchical substructure of three nodes. 

Whenever there is tie between A-B and B-C, then there

is also a tie between A-C 

density ρ of a network: “global measure” the “proportion of ties” 

realized in a set of nodes (here: digraph)

ego: usually the sender

alter: usually the receiver

valued network: not just a tie, but also “intensity” of a tie
node, actor, 

vertex

dyad

arc

transitive 

triad
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Knoke & Yang (2008), Prell (2012), Scott (2000)

(Wasserman & Faust

1994: 566)
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Types of networks

complete network                 vs. ego-centered network

Social context with boundaries, 

e.g. organization, neigbourhood. 

Probability of tie among vertices 

can be predicted by a model

Individual is the 

boundary. Probability 

of tie among vertices 

can >not< be 

predicted by a model, 

except for ties among 

the alteri

“feel close” to personI. 

complete network with boundaries            vs.

II. 

global networks

Knoke & Yang (2008), Prell (2012),  Scott (2000)

Prof. Dr. Michael Windzio
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indegree (digraph)

Number of ingoing arcs. Can be an indicator 

of prestige, but also of power or control

outdegree (digraph)

Number of outgoing arcs. Can be an 

indicator of power or control

Star circle

Undirected ties: 

“degree” 

star: only the hub has 

alternatives

circle : all nodes 

have the same level 

of power

A

B
G

A

C

D

E

F

B

CD

E

F
G

Tendency 

towards 

„Star“

2 x In-, 1 x 

outdegree

Local measures Knoke & Yang (2008), Prell (2012),  Scott (2000)

degree (graph)

Number of edges, or: nodes ego 

is tied to. 

Prof. Dr. Michael Windzio

Closeness-Centrality: Hub in the star network has an advantage of reaching all other nodes 

in just one step. All others need two steps, so the hub is more “close” to all other nodes. 

Betweennes-Centrality: Hub A in the star network has an advantage because he is the 

broker in each transaction between B-G that goes via A. A lies “between” B-G . A can 

coordinate, intervene or retain information. A “…has thus greater power since it brokers all 

exchanges“ (Aldersen & Beckfield 2004) 

In-und outdegree in matrix form. Plot of network based on algorithms 

such as “spring embedder” (arcs pull vertices similar to a spring, thereby 

the “force” of each spring orders the plot, 

many springs → high power. 

Actually, the matrix is the interesting thing! But looks boring…

digraph, convention:

row= sender column= receiver

Software for SNA : 

UCINET

http://www.analytictech.com/downloaduc6.htm

Pajek (freeware!)

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

R: www.r-project.org
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A B C D E

A 1 1 1 1

B 0 0 1 1

C 1 0 1 0

D 0 0 1 0

E 0 1 0 0

A

E

B

CD

Local measures Knoke & Yang (2008), Prell (2012),  Scott (2000)
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Ego has a favorable position, so that he can 

reach all alteri in a few steps (closeness). d= 

distance, no. of steps.

Ego (node i, ni) has a favorable 

position, so that it will be unlikely 

not to pass ni if alter wants to reach 

another alter. Ego ni is strongly 

„between“ the alteri 

Closeness-Centrality

Betweenness-

Centrality
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closeness-centrality (Cc) of node 1 is 

higher (=1) than Cc of node 2 (=0,57). Cc 

will be computed or any node. The higher 

Cc, the more close a node is to all other 

nodes. 

i

a

b

c

d

e

The denominator includes all 

possible ties in the network. This 

would mean  n*(n-1)/2.

But ego himself is excluded from the 

calculation, hence

(n-1)*(n-2)/2

In the left graph, node i has the 

highest betweenness centrality, 

thereby he can exert power –

depending on the network 

dimension. 

Betweenness centrality is important 

in information diffusion networks. 

The nominator includes the probability of 

passing i, if j and k try to reach each other 

using the shortest path (geodesic).

example: between e and b there are 2

geodesics, of which one is via node i

(=0.5). The same is between  d and b. Butt 

100% (=1) of all geodesics between a and 

b go via i, also between a and e. So the 

nominator is 0.5+ 0.5+1+1 +…+ .

In other words: for each dyad we 

compute the share  of  geodesics passing i 

(related to all geodesics). This will be 

done for all possible ties among the alteri 

of ego i. Then we proceed with the next 

ego and his alteri, e.g. b. 

This is why we need software for larger 

networks (UCINET, Pajek, R)!

j,k≠i: for node i it is the sum 

of the shares of all geodesics 

between j and k passing i (   

gjk(ni)/gjk ). In the nominator 

this is divided  divided by 

>all< geodesics between j 

and k).  

node 1

node 2

Local measures

Otherwise, think carefully about how 

meaningful this is in your application. It 

makes sense if you are interested 

“bokers”.    

Knoke & Yang (2008), Prell (2012),  Scott (2000)

j and k have many geodesics. What is the 

share going via i?
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Reachability

Directed graph: set of connections by which target actor B can be traced to a source, namely 

actor A (342). 

Undirected graph: division of graph in different components. Are there isolates, or isolated 

sub-groups? Small world or ghetto (“Parallelgesellschaft”)?

Connectivity

Connection may be weak. Several paths between A and B with rather long distances. 

Number of nodes to remove in order to make actor unreachable. 

Distance

Local measure: geodesic distance between two actors. Average geodesics are short in Small 

Worlds. eccentricity: actor’s largest geodesic

diameter: the largest geodesic in the network (global measure) 

→ should geodesics be used in contagion networks? InfecTons, social learning  or rumors?

→ how many steps are in between two actors?

→ How many alteri can ego infect?

Concepts and measures of social network analysis Hanneman & Riddle 2014

Prof. Dr. Michael Windzio
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Reciprocity (mutuality)

Focus is on a dyad. A) probability to observe a reciprocated tie among all dyads, including 

“null” dyads. 

B) more common: probability to observe a reciprocated tie among all 

dyads with any tie

Transitivity

Dyad is the smallest social unit in a network. But triad is the smallest “sub-society”. 

“The triad involving actors i, j, and k is transitive if whenever i→j and j→k then i→k “

(Wasserman & Faust 1994: 243)

Hierarchical, because i→k is conditional on other ties.

Social systems do often tend to transitive closure 

Concepts and measures of social network analysis Hanneman & Riddle 2014

Prof. Dr. Michael Windzio 32

Concepts and measures of social network analysis Hanneman & Riddle 2014

Prof. Dr. Michael Windzio

Triad census: 16 ways of having triadic relationships in directed data, also in-transitive triads

TRIAD CENSUS notation: 

1.) no. of mutual dyads

2.) no. of asymmetric dyads

3.) no. of null-dyads

4. character of further distinction 

(transitive, cyclic, 

u=> up, d=>down, “sent from”)

http://www.paulmichaelcohen.com/wp-content/uploads/2012/08/1-s2.0-S0378873301000351-gr1.jpg
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Concepts and measures of social network analysis Hanneman & Riddle 2014

Prof. Dr. Michael Windzio

Clustering

share of ego’s alteri who are connected with each other (“clique-like”, if clustering is high).

• Overall graph clustering: average of the densities of the neighborhoods of all ego’s

• weighted overall graph clustering: each ego’s clustering value is weighted by the size of 

ego’s neighborhood.

Block density (by actor attributes)

Order matrix according to organizations or nodes “of the same type”. Compute density within 

the blocks, but also density between blocks (346p).

E-I-Index

External-internal index. (Number of ties to outsiders - Number of ties to internal) / all ties

absolute no. of ties: (50-14) / 64              =56,3%

in percent: (78.1 - 21.9) / 100%=56,3%

-1: all ties are internal subgroup 0: no segregation +1: all links are external

ties ties

ties ties

E I
EI

E I

−
=

+

Standardization: Rescaling according to min. and max. possible n of external. 
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Concepts and measures of social network analysis Hanneman & Riddle 2014
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E-I-Index

External-internal index. (Number of ties to outsiders - Number of ties to internal) / all ties

-1: all ties are internal subgroup

0: no segregation 

+1: all links are external

ties

ties ties

ties I
EI

E I

E −
=

+

(1-4)/7 = -3/7 (1-2)/7 = -1/7

Gruppe 1 Gruppe 2Total 

(1-6)/7 = -5/7

Depends on group sizes, resp. opportunity structure
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Concepts and measures of social network analysis Hanneman & Riddle 2014
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Substructures

Clique: subgroup > 2 in which all actors are connected. Often too strong.

N-clique: subgroup > 2 in which all actors are connected by path-length n (usually 2).

N-clan: N-clique connects to others who are not member of the clique. Members 

of N-Clan are all connected in n steps and also all intermediate nodes 

belong to clan as well 

K-plexe: Member of a clique if node has ties to all except for k alteri. Node must 

have to n-k members of that clique direct ties.  Tends to find overlapping 

circles if compared to N-cliques.

K-cores: node is connected to clique if it is connected to at least k members, 

regardless of how many dyads in the clique remain open from ego’s 

perspective.

36

Concepts and measures of social network analysis Hanneman & Riddle 2014
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Substructures

Component: non-reachable sub-graphs: internally connected, but 

disconnected between sub-graphs. 

Weak component: connected, regardless of direction of ties. No distinction between 

sender and receiver. 

Strong component: march through the component in direction of the arcs. 

Cutpoint: which nodes can be removed in order to create disconnected components?

Lambda set: which  connections can be removed in order to create disconnected components?

Weak Strong 
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Discussion

Prof. Dr. Michael Windzio

• which measure makes sense for specific kinds of networks?

- information flow vs. friendship

• Other examples?

• If a broker accumulates power, the utility of establishing ties must be every high for the 

others. If they can, they will do this. Dynamic view instead if static network.

• Dynamic perspective is not just a data issue or a statistical method (SIENA). Sometimes, 

static descriptive concepts of network analysis collapse or don’t make sense anymore if 

dynamics is assumed. 

• The same is true regarding triadic closure

• E-I-Index: within and between group ties. Interesting to analyze e.g. ethnic segregation, but 

is only bivariate. Is segregation chosen by purpose, is it driven by opportunity structures? Do 

effects persist if we control further covariates? 

• Statistical model that explains why we observe a specific realization of a network of a given 

set of actors out of all [  2(n*(n-1))  ]  networks in a multivariate regression:

Exponential Random Graph Model

Introduction into SNA using R

38

intro_SNA.R

network_convert.R

Prof. Dr. Michael Windzio
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Modeling social networks: Exponential 

Random Graph Models (p*)

Prof. Dr. Michael Windzio 40

Network of birthday invitations in a school-class, 4th grade

arc =  who was as a guest at your birthday?

Windzio (2012)

Prof. Dr. Michael Windzio
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Modelling social networks (Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

• Why do we observe a specific realization of a network in a set of n vertices?

• n vertices can form a high number of different realizations of a network.

• Estimate the probability of observing network x out of {X} by exploring deviation from a 

pure random network. Do so by regarding each tie as a random outcome-variable

)1*(2   networks possible ofnumber −= nn

Prof. Dr. Michael Windzio 42

Modelling social networks (Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

Prof. Dr. Michael Windzio
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Modelling social networks (Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

Prof. Dr. Michael Windzio 44

Modelling social networks (Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

Prof. Dr. Michael Windzio
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re-arrangement of the network matrix into „long-format“ (column  vector). The outcome 

variable „tie“ can be predicted by regression models for binary outcomes (logit, probit, 

cloglog), while controlling for the statistical non-independence. 

0   1   1

0   0   1

1   1   0

ego alter tie Xe Xa

1 1 0

1 2 1

1 3 1

2 1 0

2 2 0

2 3 1

3 1 1

3 2 1

3 3 0

1 2

3

Modelling social networks (Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

Problem: Dyads are statistically non-independent observations. 

solution: Control the degree of non-independence by variables indicating the 

“degree of embeddedness”: change in network characteristic (e.g. no. of transitive 

triads) due to presence/ absence of an edge (or arc) in a dyad. p*- model
Prof. Dr. Michael Windzio

(Windzio 2012)
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(Windzio 2012)

effect of contact among 

parents on birthday party 

attendance 

effect of contact among 

parents on birthday party 

attendance 

Indicates highly 

integrated “turkish”
community at 

parents’ level

Indicates highly 

integrated “turkish”
community at 

parents’ level
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� Motivation of transitive triads in friendship networks:  F. 

Heider’s balance theory, modified by Newcomb (1968)

� Two actors aim at cognitive balance regarding the 

evaluation of objects or persons

+

+ +

+

- -

-

+ +

+

+ -

balanced pattern – i und j both either like or dislike k
i j

k

i j

i j i j

k k

k

unbalanced pattern – i and j are jealous because of k, or j must 

explain i why j dislikes k
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� Unbalanced relationships imply strain, which is why the dissolution 

rate is high (Scott 2000: 14)

� Stable relationships are usually balanced. Or: evolutionary process of 

creation and selection of relationships favors balanced patterns

� Transitivity as generalization of balance, but it implies a hierarchy. 

The triad involving actors i, j, and k is transitive if 

whenever

i→j and j→k

then 

i→k

(Wasserman & Faust 1994: 243)

49

cyclic triad

Prof. Dr. Michael Windzio

B

A

B

A

high connectivity low connectivity

dyad of interest: AB

C C
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“… this idea of transitivity has come to be seen as a main structural characteristic of 

(social (!), M.W.) networks, to the extent that many network analysts have questioned 

what remains to be discovered about network structure, once an analyst has 

accounted for transitivity” (Prell 2012: 141)

• If so, then controlling for transitive triads should capture the most important 

source of statistical non-independence of observations (ties) in social networks.

• If a dyad is embedded in many transitive triads, the degree of non-independence 

is high

• It makes thus a difference for the model whether a network shows high or low 

connectivity

this tie makes a 

difference of 4 

transitive triads in the 

overall network. 

Estimate effect θ of 

change statistic Z.

4)]()([ •=− −+ θθ ijij xZxZ

Prof. Dr. Michael Windzio

p* model: conditional logistic regression

� Member of ERGMs (Exponential Random Graph Model): Estimate the 

probability P of a specific realization of a network (namely the empirical 

network x) out of a set of all possible networks X with g vertices.

� z(x) are network or actor (dyadic) characteristics, θ regression 

coefficients, κ is anormalizing constant (Σ der P of the odds of all possible 

networks this set of vertices could form. Hence, just like in the 

multinomial regression model the denominator sums up to 1.  

� κ does not work as a denominator properly if g > 6    

(Strauss & Ikeda 1990)

)(

)}(exp{
)(

θ

xzθ'
xX

κ
==P ∑

−

=

=
)1(2

1

})(exp{)(

gg

n

xzθ'θκ
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Modelling social networks (Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

?

Prof. Dr. Michael Windzio
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What makes network x more likely? Network consists of ties (or non-

ties) between dyads.

Now regard all dyads in the network separately. Estimate P of a tie 

between i and j conditional any other „relational information“ in the 

network (complement relation). E.g. the number of transitive triads. 
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p* model: conditional logistic regression

Estimate effect θ of network change statistic Z on the 

probability of a tie between i and j. 

But estimate also effects of actor and dyadic attributes.

This is a logistic regression model 

Prof. Dr. Michael Windzio

)]}()([exp{1

)]}()([exp{
−+

−+

−+

−
=

ijij

ijij

xZxZ

xZxZ

θ

θ

)]()([
)|0(

)|1(
ln                                 

,

, −+ −=












=

=
<=> ijijC

ijji

C

ijji
xZxZ

xxP

xxP
θ

)|1( ,

C

ijji xxP =

� similar to the logistic fixed effects panel model for two time periods (Chamberlain 

1980)

� the change statistic is „ the contribution of each edge or arc to the change in the 

number of how often a network characteristic z occurs

� : e.g. transitive triads, cyclic triads, mutuality, 

indegree, outdegree, centrality, alternate-k-triangles 

(the latter is not possible in conditional logistic regression)

� logistic regression usually leads to model degeneracy (empirical network 

can’t be reproduced by model, but rather mostly zeros or ones in the matrix). 

Today, simulation methods are used.
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p* model: conditional logistic regression

)]()([ −+ − ijij xZxZ
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� “sociology has to account for chaos and normality (order, M.W.) together” (H. C. 

White) (Lusher et al. 2013: 29).

� motivates a probabilistic approach to states and events. 

� complete chaos: we can easily simulate a random network in R

� but actual social networks usually deviate systematically from random networks. 

Hence, there is always a lot of random noise, but also a lot of order.

� Why and in which way do empirical networks deviate from randomness?

� Why do we observe a specific realization of a network out              possible 

ones?
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

library(igraph)

g.ws <- watts.strogatz.game(1, 25, 5, 0.05) # one graph, 25 vertices, 5 

# neighbours, 5% rewiring

plot(g.ws, layout=layout.circle, vertex.label=NA)

layout.kamada.kawai

)1*(2 −nn

Kolaczyk & Csárdi (2014: 75p) 

Prof. Dr. Michael Windzio

� simulate a high number of random graphs with n nodes and k arcs. Compute the 

average network statistics and compare these with your empirical network.  

56

Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

� Obviously, regarding transitive triads, the reality is far from being chaotic. 

� The overrepresentation of transitive triads can be used for an 

“explanation”. Transitivity might be regarded as a (social) “mechanism” 

of how real networks are created.

� For developing an appropriate model specification for your networks, think about 

which configurations could be theoretically important in this specific network.

� Transitivity is often a good candidate, also reciprocity, except for specific cases. 

Lusher, Koskinen & Robins (2013: 30p)

Prof. Dr. Michael Windzio



Often applied configurations, e.g. in friendship networks

• Transitive triads occur more often than by chance

• Cyclic triads occur less often than by chance

• Reciprocity/ mutuality occurs more often than by chance

• Two in- and out-stars
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)
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Often applied configurations, e.g. in friendship networks

• in- and out-k-stars. k is number in- or outgoing ties. 

estimation of 2-,3-,4-, … , k-stars as k separate covariates would capture the 

whole degree distribution. The respective θ-parameters for each of the k stars are 

nested, so actually these would be interaction terms. Such models can‘t be 

estimated because the number of parameters would be too high. 

• Snijders et al. (2006) (“New specifications”) suggestion to limit the number of parameters: 

down-weight the contributions of each higher-degree nodes. Use a geometrically 

decreasing function.  

• What about λ? It is a smoothing parameter. In many cases, a value of 2 fits well. But it can 

be also estimated from the data: take λ as it fits best (CEF, “curved exponential family 

modeling”). Or:

• Start with small alpha (0.1), increase until you get the best model log likelihood.   
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

αθθ −
− •= edjdj 1

Instead of estimating k separate θ-parameters for each interaction (one-in-star*two-in-

stars*three-in-stars*…* k-in-stars) (which would not work), just estimate >one< θ, but add a 

weight to all higher order interactions. Thereby, these higher-order nodes have an impact, 

but its influence is determined by alpha. Here, “d” means “degree”. Below, “S” means stars

1−
= α

α

λ
e

e
λ

θ
θθθ α )1(

)(1

−−
− −=⇔•= ks

ksdjdj e
where

Lusher, Koskinen & Robins 2013: 66

Harris 2014: 74
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Often applied configurations, e.g. in friendship networks

• gwesp: geometrically weighted edgewise shared partners (statnet)

• geometrically decreasing function of the effect, similar to k-stars

• alternate-k-triangles (PNet). 

different parametrisation in PNet and statnet:

PNet: alternate-k-triangles, λ=2            equals

statnet: gwesp(0.693, fixed=TRUE)( =ln(2) )

Modeling gwesp complicates somewhat the interpretation of the model, see next 

slides

• gwdsp: geometrically weighted dyadwise shared partners (statnet)
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

Lusher, Koskinen & Robins 2013: 71

alpha = 0: only the first (“just one”) triangle contributes to the estimation of the effect. 

alpha = 0.25:  also other ties contribute, but contribution of each additional triangle is 

down weighted by factor .22. To compute the effect of the kth triangle a 

dyad is embedded in use: 
k25.0 .22)1( =− − ke
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

Lusher, Koskinen & Robins 2013: 71

alpha = 0: only the first (“just one”) triangle contributes to the estimation of the effect. 

alpha = 0.25:  also other ties contribute, but contribution of each additional triangle is 

Alpha = 0.693 down weighted by factor .22 or .499. To compute the effect of the kth triangle 

a dyad is embedded in use: 

k25.0 .22)1( =− − ke

Prof. Dr. Michael Windzio

(1-exp(-0.693))^0=1

(1-exp(-0.693))^1=.4999264

(1-exp(-0.693))^2=.24992641

(1-exp(-0.693))^3=.12494481

(1-exp(-0.693))^4=.06246321

(1-exp(-0.693))^5=.03122701

k693.0 .5)1( =− − ke

(1-exp(-0.25))^0=1

(1-exp(-0.25))^1=.22119922

(1-exp(-0.25))^2=.04892909

(1-exp(-0.25))^3=.01082308

(1-exp(-0.25))^4=.00239406

(1-exp(-0.25))^5=.00052956

k25.0 .22)1( =− − kek693.0 .5)1( =− − ke Large weight, 

closer to 1, 

small down 

weight effect

Small weight, 

closer to 0, 

large down 

weight effect
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

• statnet actor attributes (just a selection of the most important ones)

nodeicov("x_continuous")

nodeocov("x_continuous")

nodeifactor("x_categorical", base=1)

nodeofactor("x_categorical", base=1)

nodematch("x")

edgecov(x_matrix)

statnet structural effects (just a selection of the most important ones)

edges constant

mutual mutuality (or: reciprocity)

ctriple cyclic triplets (occurs less often in friendships 

than by chance)

gwidegree/ gwodegree geometrically weighted in/outdegree

gwesp, gwdsp see last slide

Effect of continuous actor attribute 

on in- (i) or outdegree (o) (directed 

networks only [dno])

Effect of categorical actor attribute 

on indegree (i) or outdegree (o) 

(dno)

Effect of having the same actor 

attribute (“homophily” hypothesis)  

Effect of dyadic covariate stored in 

a matrix object. Can be binary or 

continuous.
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

• statnet model results

Formula:   explain ~ edges + mutual + absdiff("alter") + 

nodematch("frau") + nodematch("migrant")

Estimate Std. Error MCMC % p-value    

edges             -4.51001    0.15794      0  <1e-04 ***

mutual             2.79633    0.23348      0  <1e-04 ***

absdiff.alter -0.18969    0.08385      0  0.0237 *  

nodematch.frau 0.75825    0.13095      0  <1e-04 ***

nodematch.migrant 0.22451    0.13089      0  0.0863 . 

• Interpretation similar to binary logistic regression (Windzio 2013). 

( )( )
migsame

K

k

yzkk

C

ijij YactorsxYP

_same_sexdiff_altmutuality

1

)(

10.2210.7582520.1812.794.51exp1

1

exp1

1
),n ,|1(

•+•+•−•+−−+
=

















−+

==

∑
=

δθ

disp 1/ (1+exp(-(-4.51001*1+2.79633*1-0.18969 *2 + 0.75825*1 +0.22451*1   )))=.247

disp 1/ (1+exp(-(-4.51001*1+2.79633*1-0.18969 *2 + 0.75825*0 +0.22451*1   )))=.133

Ceteris paribus difference in probability of a tie 

between “same sex” and “not same sex” dyads (mutal 

relations, 2 years age difference, either both migrants 

or not).
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

Formula:   explain ~ edges + mutual + gwesp(decay = 0.5, fixed 

= TRUE) +  absdiff("alter") + nodematch("frau") + 

nodematch("migrant")

Estimate Std. Error   MCMC % p-value    

edges             -5.03194    0.23810      0 < 1e-04 ***

mutual             2.04905    0.08291      0 < 1e-04 ***

gwesp.fixed.0.5    1.30181    0.13129      0 < 1e-04 ***

absdiff.alter -0.14215    0.03003      0 < 1e-04 ***

nodematch.frau 0.59612    0.04594      0 < 1e-04 ***

nodematch.migrant 0.14237    0.04809      0 0.00308 ** 

• statnet model results

k5.0 .39)1( =−= − k

GWESP eδ

( )( )migsamegwesp

C

ijij YactorsxYP

_same_sexdiff_alt

3

mutuality 10.1410.5920.1439.1.3012.04  5.03exp1

1

),n ,|1(

•+•+•−•+•+−−+
=

== Ceteris paribus probability of a tie between nodes (dyad) 

with 3 edgewise shared partners  (Harris 2014: 87)

k is the number of the respective statistic. This is 

plugged into the formula for the decreasing effect
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

• statnet model results

Formula:   explain ~ edges + mutual + gwesp(decay = 0.5, 

fixed = TRUE) + absdiff("alter") + nodematch("frau") + 

nodematch("migrant") +  edgecov(friends)

Iterations:  20 

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value    

edges             -5.15568    0.17954      0  <1e-04 ***

mutual             1.08614    0.25917      0  <1e-04 ***

gwesp.fixed.0.5    0.56984    0.08823      0  <1e-04 ***

absdiff.alter -0.06570    0.09494      0  0.4889    

nodematch.frau 0.36168    0.14288      0  0.0114 *  

nodematch.migrant -0.04337    0.13342      0  0.7452    

edgecov.friends 3.01714    0.16044      0  <1e-04 ***

“friends” is a dyadic covariate, that is an adjacency matrix where 1 

indicates friends, 0 not friends. Interestingly, the effects 

“nodematch.migrant” vanishes, but “nodematch.frau” remains.
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On algorithms and diagnostic

• In contrast to the p* model (logistic regression), which is a specific case of ERGM, effects 

such as  gwesp can’t be estimated with standard maximum likelihood methods.

• MCMC (Monte Carlo Markov Chain) simulation methods go through networks.

• gwesp and gwdsp can prevent model degeneracy. Logistic regression methods usually 

results in degenerate models (empirical network can’t be reproduced form the model)

• This does not necessarily mean that estimated effects are wrong - but somewhat  biased.

• As we know, a large part of the dependence is already captured by transitive triads.

• If you are interested in covariates, compare models with transitive triads  and gewsp. Actor 

attribute effects should not differ much in small networks (e.g. 20 nodes).

• In larger networks, gwesp is advisable in general.

• In the end, it is an empirical question. But gwesp is usually superior.   
65

Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)
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On algorithms and diagnostic

• Maybe, MCMC estimation is a “strange new world” for those who are used to standard ML 

methods

• Important: model diagnostics 

1. does the model correspond with the empirical network?

simulate many networks from the model. Compute average network 

statistics, such as degree, edgewise shared partners. If simulations deviate 

too much, the model seems to be degenerate. 

2. Look at MCMC diagnostics, especially at “traces”: each sample from the 

simulated distribution of parameters should depend only on the starting 

value parameters of the last step. But not on the entire path of the time-

series.  
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)
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On algorithms and diagnostic
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

After having estimated the model, gof simulates a number of networks (e.g. nsim=200) from the 

specified model. 

Since many different networks can be simulated from a rather simple model, we compare average 

statistics from the simulated networks with statistics in our empirical network.

model3.gof <- gof(model3 ~ idegree + odegree + distance + espartners )

plot(model3.gof)
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Goodness-of-fit diagnostics
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

model3.gof <- gof(model3 ~ idegree + odegree + distance + espartners )

plot(model3.gof)

let’s check the object model3.gof

Goodness-of-fit for in-degree 

obs min  mean max MC p-value

0   18   9 16.47  26       0.78

1   26  13 26.09  41       1.00

2   21  17 25.30  35       0.44

3   17  11 18.66  34       0.82

4   11   5 11.76  19       0.96

5    5   1  5.77  13       0.94

6    8   0  2.99  10       0.02

7    1   0  1.18   5       1.00

8    1   0  0.50   3       0.80

9    0   0  0.16   2       1.00

10   0   0  0.11   1       1.00

11   1   0  0.01   1       0.02

Goodness-of-fit for edgewise shared partner 

obs min   mean max MC p-value

esp0 179 166 186.31 214       0.66

esp1  62  33  46.29  68       0.08

esp2  18   1   8.19  19       0.04

esp3   3   0   0.56   3       0.02

esp4   0   0   0.06   1       1.00

values below 0.05 (or 0.10) indicate 

significant differences in the 

respective statistic between the 

simulated networks and the empirical 

one.  
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

Sample statistics
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this looks quite well: 

each statistic should 

vary stochastically 

around the mean of 0. 

Zero represents the 

value of the statistic in 

the observed data. 

this deviates 

somewhat from how 

it should be.

traces look rather 

“unhealthy”
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Generalization: Exponential Random Graph Models
(Lusher, Koskinen & Robins 2013; Harris 2014; Goodreau et al. 2008)

sim1 <- simulate(model3) #Creates a simulated network from the 

# fitted model 

plot(sim1,vertex.col="red" ) # plots the simulate network 

emprical network simulated network

Prof. Dr. Michael Windzio

Introduction into ERGM using R
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ergmR_explain.R
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Exponential Random Graph Models

and meta-analysis
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• Each ERGM is in fact a single case study

• Multiple networks (organizations, families) have to be analyses separately

• How can the network specific results be generalized?

• Similar problem: many medical studies show different results on e.g. smoking behavior 

and cardiovascular disease

• Meta-analysis is a method to combine the results of these studies in a data set and analyze 

the results using statistics

• Several methods. One is by averaging the coefficients, weighted by the degree of 

(un)certainty: the smaller the standard error, the higher is the contribution of a particular 

effect. 

• Problem: Model specification should be the same for each network. But in some cases, the 

specification does not fit, or it does not converge. If so, “useless” networks are excluded. 

This can be highly problematic from a sampling theory perspective: “select the data until it 

fits to the model”

• Exclusion should be rare!
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Exponential Random Graph Models and meta analyiss

Prof. Dr. Michael Windzio 74

Exponential Random Graph Models and meta analyiss

• If the studies used in a meta analysis are considered as a random sample, the 

number of studies should be >= 30

• Otherwise, fixed effect methods should be used

• The following meta-analysis is based on a sample of k=9 classes (networks) only

  

 dealings 

edges  

friends(edgecov)  

 

gwesp.fixed.0.1  

 

nodematch.girl  

nodematch.ethnie  

 

nodeocov.no: of books  

nodeocov.temper  

absdiff.achievement orientation 

 

-4.531*** 

2.233*** 

 

1.643*** 

 

-0.417 

0.239 

 

-0.001 

-0.165 

-0.150 

 

FE meta analysis k=9  
 

ERGM of exchanging goods or toys in school 
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Exponential Random Graph Models and meta analyiss

• The graph gives an impression of how the contribution of each network depends on 

the certainty of the estimation
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friends_meta_ergm.R
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Modeling network dynamics. Actor-based 

stochastic models, SIENA

SIENA: Simulation Investigation for Empirical Network Analysis

Prof. Dr. Michael Windzio 78

SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

time 1 time 2

time 3
time 4

Prof. Dr. Michael Windzio
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SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

• Longitudinal data, panel data of networks, e.g. the same network at t1 and t2. Usually less 

than 10 measurement occasions (Snijders et al. 2010).

• Assume that set of vertices is constant, but edges/arcs (relations) change: new ties and/or 

dissolution of ties between t1 and t2. (or: leave it as it is). Two  components of the model:

1. Waiting time: Actors differ in rate of deciding on changing their ties. Rate 

function of “change” is estimated. “Speed” with which actors make their 

decisions. Can vary between actors, that is, can depend on the surrounding 

network structures and individual characteristics. However, rate function is of less 

substantial interest and heterogeneity is rarely modeled!

2. Decisions: how does an actor’s decision on establishing or dissolving a tie (if he 

tends to change) change the network from t1 and t2? Objective function as a 

multinomial logit model: for each ego, it estimates the probability to drop a tie, 

create a tie, or keep status quo – with regard to all alteri in the network.

More interesting: what kind of decision does ego make - and why?

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

• Actor with the shortest waiting time makes the decision. He can make a micro-step (in 

“continuous” time between t1 and t2).

ego

alter 1

alter 2

alter 3

alter 4

alter 5

alter 6

alter 7

Should ego dissolve the outgoing 

tie? How does his network change 

then? 

ego

alter 1

alter 2
alter 4

alter 5

alter 6

alter 7

Should ego create 

an outg. tie to 7?

• Now it’s on egos turn: ego’s probability to drop, create, or keep a tie is estimated with 

regard to each of n alteri in the network – and the respective network statistic/ actor/ 

dyadic attribute. It is under his control to change the relation to alter by creating or 

dropping each outgoing tie.

• Ego’s choice alters the network. Then this algorithm proceeds for each change (micro-

step) in “continuous” time done by the next actor.

alter 3

Ego’s choice depends on the surrounding network, 

but also ego’s, alter’s and dyadic characteristics. If e.g. 

transitive closure makes new ties more likely is an 

empirical question.

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

Prof. Dr. Michael Windzio
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SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

• Now assume that the network at t1 can be well explained by a model:

logit(tie) = b0(outdegr.)+b1*recipr.+b2*transitiv.+b3*same_sex

ego

alter 1

alter 2

alter 3

alter 4

alter 5

alter 6

alter 7

Should ego dissolve the outgoing tie? 

Yes:  U1 = -1.9 + 0 +0.7 + 0  = -1.2

No:  U2 = -1.9 + 1.3+0.7+0  = 0.1

ego

alter 1

alter 2
alter 4

alter 5

alter 6

alter 7

Should ego create an outg. tie to 

7?

Yes: U1 =-1.9+1.3+0+0.2 = -0.4

No:  U2 =-1.9+0+0+0.2    = -1.7

• According to the given utilities at t1, ego compares the utility of each option in the 

network, and tries to maximize his/her utility. 

• Number of options is high: drop or create tie to each alter – or do nothing. 

alter 3

b0 outd. = -1.9 

b1 recip. = 1.3

b2 trans. =  0.7

b3 ssex.  = 0.2

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

Assumptions

• Underlying time is >continuous<: Even though measurements are discrete (panel data of 

networks), it is assumed that the network change between two measurements proceeds 

in micro-steps in between. Here, continuous time is assumed. 

• Changing networks is a Markov process:  at any point in time, the future evolution of the 

network depends only on the current state, but not on the earlier or entire history. 

• Actors can control their outgoing ties: Individualism. Actors aim at maximizing some sort 

of utility and do so having full information (!) on the entire network, e.g. transitive triads 

ad characteristics on the other actors. 

• At a given micro-step moment, one selected actor can make one change:  no 

simultaneous or coordinated changes are allowed in the model. This is problematic e.g. if 

one actor becomes a bully in school and a whole group of alteri drops their ties to him.  

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

Tie changes between subsequent observations:

periods        0 =>  0   0 =>  1   1 =>  0   1 =>  1   Distance Jaccard   Missing

1 ==>  2       475        63        24        38        87     0.304     0 (0%)

2 ==>  3       470        29        21        80        50     0.615     0 (0%)

3 ==>  4       460        31        27        82        58     0.586     0 (0%)

segregation.descriptive.out

• combine the networks of the respective t in R

• Describe the result. Is a SIENA model possible? SIENA need the “right” amount of stability 

and change. If network is too stable, the there is not enough information for the 

estimation. If it is too fluid, the process can’t be regarded as evolution. This is then 

against the assumption of SIENA. The Jaccard index should be .3 or higher. Jaccard = .2 

could correspond with estimation problems. Jaccard = .80 indicates too few changes. 

• The Jaccard Index measures the proportion of stability in the process. N11 means stable 

relations between t1 and t2 (00,11), N01 and N10 the respective change.

segregationdata <- sienaDataCreate(friendship,sex.M,fath_rel,primary) 

111001

11

NNN

N
Jaccard

++
=

print1Report(segregationdata,segregationeffects, 

modelname='segregation.descriptive')

Creates 

output with 

descriptives

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

Estimates, standard errors and convergence t-ratios Convergence

Estimate   SE      t-ratio   

1. rate constant friendship rate (period 1) 15.3428  ( 6.9649   )  0.0586   

2. rate constant friendship rate (period 2)  3.2183  ( 0.5859   ) -0.0283   

3. rate constant friendship rate (period 3)  3.8065  ( 0.6401   ) -0.0087   

4. eval outdegree (density)                 -2.2573  ( 0.1803   ) -0.0890   

5. eval reciprocity                          0.9124  ( 0.1696   ) -0.0574   

6. eval transitive triplets                  0.2202  ( 0.0387   )  0.0273   

7. eval primary                              0.6260  ( 0.1930   )  0.0392   

8. eval sex.M alter                          0.0142  ( 0.1918   ) -0.0055   

9. eval sex.M ego                           -0.0470  ( 0.1939   )  0.0719   

10. eval same sex.M                           0.9661  ( 0.1871   ) -0.0886   

11. eval same fath_rel                        0.0425  ( 0.1244   ) -0.1056   

Total of 2757 iteration steps.

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

Prof. Dr. Michael Windzio
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Estimates, standard errors and convergence t-ratios Convergence

Estimate   SE      t-ratio   

1. rate constant friendship rate (period 1) 15.3428  ( 6.9649   )  0.0586   

2. rate constant friendship rate (period 2)  3.2183  ( 0.5859   ) -0.0283   

3. rate constant friendship rate (period 3)  3.8065  ( 0.6401   ) -0.0087   

4. eval outdegree (density)                 -2.2573  ( 0.1803   ) -0.0890   

5. eval reciprocity                          0.9124  ( 0.1696   ) -0.0574   

6. eval transitive triplets                  0.2202  ( 0.0387   )  0.0273   

7. eval primary                              0.6260  ( 0.1930   )  0.0392   

8. eval sex.M alter                          0.0142  ( 0.1918   ) -0.0055   

9. eval sex.M ego                           -0.0470  ( 0.1939   )  0.0719   

10. eval same sex.M                           0.9661  ( 0.1871   ) -0.0886   

11. eval same fath_rel                        0.0425  ( 0.1244   ) -0.1056   

Total of 2757 iteration steps.

Rate parameters indicate the frequency of actors’ opportunity to change ties. Here, it is very 

high from the 1st to the 2nd occasion (t1 → t2 ). New friendships are established, but afterwards 

the system becomes much more stable.

The higher the rate, the more micro-steps are necessary  in the “continuous” time. This is 

>average< rate in the network at (t1 → t2 ), but there is an exponential distribution of actors’ 

waiting times (just like in an event history model (Windzio 2013)).

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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Estimates, standard errors and convergence t-ratios Convergence

Estimate   SE      t-ratio   

1. rate constant friendship rate (period 1) 15.3428  ( 6.9649   )  0.0586   

2. rate constant friendship rate (period 2)  3.2183  ( 0.5859   ) -0.0283   

3. rate constant friendship rate (period 3)  3.8065  ( 0.6401   ) -0.0087   

4. eval outdegree (density)                 -2.2573  ( 0.1803   ) -0.0890   

5. eval reciprocity                          0.9124  ( 0.1696   ) -0.0574   

6. eval transitive triplets                  0.2202  ( 0.0387   )  0.0273   

7. eval primary                              0.6260  ( 0.1930   )  0.0392   

8. eval sex.M alter                          0.0142  ( 0.1918   ) -0.0055   

9. eval sex.M ego                           -0.0470  ( 0.1939   )  0.0719   

10. eval same sex.M                           0.9661  ( 0.1871   ) -0.0886   

11. eval same fath_rel                        0.0425  ( 0.1244   ) -0.1056   

Total of 2757 iteration steps.

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

This is actually the density of the network (when x is 

0). Compute P from the logit estimate: 

exp(-2.2573) / (  1 + exp(-(-2.2573) )  ) = .00991 

=> baseline share of ties realized in the network. In 

other words, the logit-transformed baseline 

probability of having a tie.
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Estimates, standard errors and convergence t-ratios Convergence

Estimate   SE      t-ratio   

1. rate constant friendship rate (period 1) 15.3428  ( 6.9649   )  0.0586   

2. rate constant friendship rate (period 2)  3.2183  ( 0.5859   ) -0.0283   

3. rate constant friendship rate (period 3)  3.8065  ( 0.6401   ) -0.0087   

4. eval outdegree (density)                 -2.2573  ( 0.1803   ) -0.0890   

5. eval reciprocity                          0.9124  ( 0.1696   ) -0.0574   

6. eval transitive triplets                  0.2202  ( 0.0387   )  0.0273   

7. eval primary                              0.6260  ( 0.1930   )  0.0392   

8. eval sex.M alter                          0.0142  ( 0.1918   ) -0.0055   

9. eval sex.M ego                           -0.0470  ( 0.1939   )  0.0719   

10. eval same sex.M                           0.9661  ( 0.1871   ) -0.0886   

11. eval same fath_rel                        0.0425  ( 0.1244   ) -0.1056   

Total of 2757 iteration steps.

exp(0.9124)=2.49: odds of having a >reciprocated< tie is 

increased by factor 2.5 if there already is a single tie. 

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

This is actually the density of the network (when x is 

0). Compute P from the logit estimate: 

exp(-2.2573) / (  1 + exp(-(-2.2573) )  ) = .00991 

=> baseline share of ties realized in the network. In 

other words, the logit-transformed baseline 

probability of having a tie.

Prof. Dr. Michael Windzio 88

SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

Estimates, standard errors and convergence t-ratios Convergence

Estimate   SE      t-ratio   

1. rate constant friendship rate (period 1) 15.3428  ( 6.9649   )  0.0586   

2. rate constant friendship rate (period 2)  3.2183  ( 0.5859   ) -0.0283   

3. rate constant friendship rate (period 3)  3.8065  ( 0.6401   ) -0.0087   

4. eval outdegree (density)                 -2.2573  ( 0.1803   ) -0.0890   

5. eval reciprocity                          0.9124  ( 0.1696   ) -0.0574   

6. eval transitive triplets                  0.2202  ( 0.0387   )  0.0273   

7. eval primary                              0.6260  ( 0.1930   )  0.0392   

8. eval sex.M alter                          0.0142  ( 0.1918   ) -0.0055   

9. eval sex.M ego                           -0.0470  ( 0.1939   )  0.0719   

10. eval same sex.M 0.9661  ( 0.1871   ) -0.0886   

11. eval same fath_rel 0.0425  ( 0.1244   ) -0.1056   

Total of 2757 iteration steps.

exp(0.9124)=2.49: odds of having a >reciprocated< tie is 

increased by factor 2.5 if there already is a single tie. 

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

Prof. Dr. Michael Windzio

Interpretation of effects in SIENA depends on whether the effect is estimated in the 

evaluation function  or e.g. on the creation rate of ties

Evaluation function: the default, most often analyzed.  

Interpretation of positive beta: the actor behaves as if he/she has a preference for this state  
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Estimates, standard errors and convergence t-ratios Convergence

Estimate   SE      t-ratio   

1. rate constant friendship rate (period 1) 15.3428  ( 6.9649   )  0.0586   

2. rate constant friendship rate (period 2)  3.2183  ( 0.5859   ) -0.0283   

3. rate constant friendship rate (period 3)  3.8065  ( 0.6401   ) -0.0087   

4. eval outdegree (density)                 -2.2573  ( 0.1803   ) -0.0890   

5. eval reciprocity                          0.9124  ( 0.1696   ) -0.0574   

6. eval transitive triplets                  0.2202  ( 0.0387   )  0.0273   

7. eval primary                              0.6260  ( 0.1930   )  0.0392   

8. eval sex.M alter                          0.0142  ( 0.1918   ) -0.0055   

9. eval sex.M ego                           -0.0470  ( 0.1939   )  0.0719   

10. eval same sex.M                           0.9661  ( 0.1871   ) -0.0886   

11. eval same fath_rel                        0.0425  ( 0.1244   ) -0.1056   

Total of 2757 iteration steps.

Tendency to triadic closure: if there is an 

intermediate person between ego and 

alter, then the odds of a direct link 

between them is increased by factor 

exp(0.22)=1.24

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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Estimates, standard errors and convergence t-ratios Convergence

Estimate   SE      t-ratio   

1. rate constant friendship rate (period 1) 15.3428  ( 6.9649   )  0.0586   

2. rate constant friendship rate (period 2)  3.2183  ( 0.5859   ) -0.0283   

3. rate constant friendship rate (period 3)  3.8065  ( 0.6401   ) -0.0087   

4. eval outdegree (density)                 -2.2573  ( 0.1803   ) -0.0890   

5. eval reciprocity                          0.9124  ( 0.1696   ) -0.0574   

6. eval transitive triplets                  0.2202  ( 0.0387   )  0.0273   

7. eval primary                              0.6260  ( 0.1930   )  0.0392   

8. eval sex.M alter                          0.0142  ( 0.1918   ) -0.0055   

9. eval sex.M ego                           -0.0470  ( 0.1939   )  0.0719   

10. eval same sex.M                           0.9661  ( 0.1871   ) -0.0886   

11. eval same fath_rel                        0.0425  ( 0.1244   ) -0.1056   

Total of 2757 iteration steps.
Same sex increases  the rate  of a new tie by 

exp(0.9661)=2.627

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

This is actually the density of the network (when x is 

0). Compute P from the logit estimate: 

exp(-2.2573) / (  1 + exp(-(-2.2573) )  ) = .00991 

=> baseline share of ties realized in the network. In 

other words, the logit-transformed baseline 

probability of having a tie.
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91

SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

Estimates, standard errors and convergence t-ratios

Estimate   Standard   Convergence 

Error      t-ratio   

1. rate  constant friendship rate (period 1) 14.5613  ( 4.2006   )    0.0841   

2. rate  constant friendship rate (period 2)  3.2187  ( 0.5368   )    0.0431   

3. rate  constant friendship rate (period 3)  3.7692  ( 0.6601   )   -0.0910   

4. eval outdegree (density)                 -2.2270  ( 0.1735   )    0.0588   

5. eval reciprocity                          0.9369  ( 0.1646   )    0.0512   

6. eval transitive triplets                  0.2122  ( 0.0373   )    0.0379   

7. eval primary                              0.6005  ( 0.1980   )    0.0138   

8. eval sex.M alter                          0.0542  ( 0.1775   )    0.0221   

9. eval sex.M ego                           -0.0919  ( 0.1869   )    0.0021   

10. eval same sex.M 0.9717  ( 0.1813   )    0.0327   

11. creat same fath_rel 0.0313  ( 0.2212   )    0.0322   

Overall maximum convergence ratio:    0.1954 Effect of fathers religion is estimated on the 

creation of ties, rather than the evaluation

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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Interpretation of effects in SIENA Creation function: effect is estimated on the rate of crating 

a new tie

Interpretation of positive beta: the actor behaves as if he/she has a preference for creating 

this state by establishing ties.  

Introduction into SIENA using R, steps to the analysis

92Prof. Dr. Michael Windzio

1 sienaNet: define the network-panel
friendship <-sienaNet(array(c(friendship.net1,friendship.net2, 

friendship.net3, friendship.net4), dim=c(numberActors,numberActors,4)))

2 coCovar, coDyadCovar, varCovar, varDyadCovar: covariates, actor, dyadic, time v/c
fath_rel <- coCovar(demographics[,4]) 

primary <- coDyadCovar(primary.net) 

3 sienaDataCreate: combine networks and covariates
segregationdata<-sienaDataCreate(friendship,sex.M,fath_rel,primary)

4 getEffects: object for model specification, incl. defaults
segregationeffects <- getEffects(segregationdata)

5 print01Report: write descriptive stats. to file
print01Report(segregationdata,

modelname='segregation.descriptive')
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6 setEffect: drop (default) effect if desired
segregationeffects <-

setEffect(segregationeffects,recip,type='eval',include=FALSE)

7 includeEffects: include or drop covariates
segregationeffects <- includeEffects(segregationeffects,X,interaction1= 

'primary')

segregationeffects <- includeEffects(segregationeffects,sameX,interaction1

'fath_rel') 

segregationeffects <- includeEffects(segregationeffects,sameX,interaction1

'fath_rel',include=FALSE)

segregationeffects <- includeEffects(segregationeffects,sameX,interaction1

'fath_rel', type='creation', include=TRUE)

8 sienaModelCreate: define where  to write outputs, 1st starting values
first.model <-

sienaModelCreate(useStdInits=FALSE,projname='segregation.first',

cond=FALSE)

9 siena07: run the model
first.results <- siena07(first.model,data=segregationdata, 

effects=segregationeffects,batch=FALSE,verbose=FALSE)

Introduction into SIENA using R

94

simple_SIENA.R

Prof. Dr. Michael Windzio
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Stochastic Actor-Based Model for Network Dynamics

selection and influence models

• Basic problem in many fields analyzing social influence: 

There are always two simultaneous processes possible – that often do actually 

occur simultaneously: 

1. behavior leads to choice of partners (or being chosen). Selection into networks.

2. ties in networks have an influence. Diffusion, contagion, assimilation

• SIENA can model the co-evolution of networks and behavior, thereby is disentangles 

selection from influence effects

• Highly relevant e.g. in criminology, life-style or medical research, but also: immigrant 

integration into specific networks and (non-)assimilation

• Panel data can be used to disentangle the effects

• Applying the “cross-lagged” panel model to social network data can do this  

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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Stochastic Actor-Based Model for Network Dynamics

selection and influence models

• Social selection and social influence in a cross-lagged model

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

Standard cross-lagged model. change effects 

are completely separated from stability

effects. 

SIENA uses >this< version of the model: at 

the behavioral level, the general tendency to 

change behavior between t1→ t2 is captured 

by a linear and quadratic effect of behavior 

at t1, that is, by β1l and β2q. But behavior at t2

is conditional on network at t1 in the 

simulated micro-steps. The same is true for 

ties, that are evaluated conditonal von alter’s

behavior in each micro step

Prof. Dr. Michael Windzio
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selection and influence models

• Social selection and social influence, conditional on current situation

in the network simulation process (micro-steps)

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

e.g. similarity in behavior at t1

leads to an homophily effect 

and creates an tie at t2.

- average similarity: ego wants to become similar with the 

alteri in the surrounding network. Influence does not

depend on number of alteri 

- total similarity: influence of “wants to be similar” is 

proportional to the number of alteri (takes group size into 

account)

- average alter effect: if alters have high values in behavior, 

ego tends also to high values

- reciprocated degree: influence of alters behavior in a 

mutual tie on ego’s behavior

Linear and quadratic 

behavioral shape parameters, 

see below. Are estimated 

automatically / per default. 
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selection and influence models

• Estimation of stability and change: linear and quadratic function of behavioral change. 

Basic tendencies that determine behavior change – independent of surrounding network 

and actor attributes. 

• Apply just a linear function if behavioral variable is binary (Snijders et al. 2010: 54). This often 

gives an uni-modal shape (see left panel).

• The maximum of the function is the behavioral value the behavior tends to.  
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Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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selection and influence models

• The “curve” should be controlled in order to reveal the effects of peer-influence while 

controlling for other factors. It captures the general long-run tendency of behavioral 

change. If this is controlled, effects of social influence can be estimated.   

• Shape depends on the combination of signs of the linear and the quadratic effect.

• The interpretation is on the quadratic effect, which is a feedback effect 

+sign: self-inforcement

–sign: correction 
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Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

1 2 3 4

behaviour

1 2 3 4

Prof. Dr. Michael Windzio 100

SIENA (Simulation Investigation for Empirical Network Analysis)

Stochastic Actor-Based Model for Network Dynamics

selection and influence models

• Results of a SIENA co-evolution model:

Network Dynamics 

1. rate constant friendship rate (period 1)    6.4213  ( 1.1306   )   -0.0350   

2. rate constant friendship rate (period 2)    5.0840  ( 0.7946   )   -0.0373   

3. eval outdegree (density)                   -2.7670  ( 0.1614   )   -0.0061   

4. eval reciprocity                            2.4051  ( 0.2211   )   -0.0164   

5. eval transitive triplets                    0.6646  ( 0.1478   )   -0.0325   

6. eval 3-cycles                              -0.1038  ( 0.2950   )   -0.0433   

7. eval drinking alter                        -0.0610  ( 0.1131   )    0.0008   

8. eval drinking ego                           0.0522  ( 0.1098   )   -0.0240   

9. eval drinking similarity                    1.4053  ( 0.6357   )    0.0182   

Behavior Dynamics

10. rate rate drinking (period 1)               1.3149  ( 0.3645   )   -0.0044   

11. rate rate drinking (period 2)               1.8009  ( 0.5459   )   -0.0582   

12. eval behavior drinking linear shape         0.3847  ( 0.3030   )   -0.0237   

13. eval behavior drinking quadratic shape     -0.0818  ( 0.1045   )   -0.0614   

14. eval behavior drinking total similarity     1.4433  ( 0.7938   )    0.0341   

15. eval behavior drinking reciprocated degree -0.0009  ( 0.1854   )    0.0164   

Total of 3198 iteration steps.

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

This is what we know: there is 

a tendency to reciprocate and  

Transitive Triads tend to 

become closed. 

Drinkers are not more social 

with non-drinkers, but they 

like to socialize with other 

drinkers 

There is some self-

correction in 

drinking 

(insignificant) 

Ego becomes similar to his alteri due to a mechanism driven by behavior of a 

higher number of alteri (total similarity). A reciprocated degree to an alter does 

not have an effect (when total similarity is controlled).     

Prof. Dr. Michael Windzio
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Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)
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Triad census

In the Triad Census, 

the x axis defines 

specific types of triads 

(Wasserman & Faust 

1994: 566). There is a 

key for the plot() 

command, which did 

not work. 

gof.triads4 <- sienaGOF(third.results,TriadCensus,verbose=TRUE)

plot(gof.triads4, center=TRUE,scale=TRUE)

Prof. Dr. Michael Windzio
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# Identify dependent network variable:
friendship <- sienaNet(array(c(net1, net2, net3), dim=c(50, 50, 3)))

# Identify dependent behavior variable:
drinking <- sienaNet(alcohol, type="behavior") # type="behavior" is important 

# it makes the model to analyse

# coevolution

# Bind data together for Siena analysis:
CoEvolutionData <- sienaDataCreate(friendship,drinking) # bind together both 

#objects into one data object the same logic applies to  multiplex networks

CoEvolutionEffects <- getEffects(CoEvolutionData)

# Define effect similarity in drinking on friendship (simX)
CoEvolutionEffects <-

includeEffects(CoEvolutionEffects,simX,interaction1="drinking",name="friendship")

# Define effect of total similarity of friends in drinking on own drinking (totSim)
CoEvolutionEffects <- includeEffects(CoEvolutionEffects,totSim, 

interaction1="friendship",name="drinking")

Introduction into SIENA models of co-evolution of networks and 

behavior using R

103

coevolution_SIENA.R
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Multiplexity

• Not just the influence of network dimension A (e.g. friendship) on network dimension B 

(e.g. advice), but co-evolution of both networks

• Non-recursive influence between A and B

• Effects A → B and B →A can be separated. 

• Similar to the co-evolution of selection and influence: in each micro-step of the Markov-

process: 

the situation in A (B) is fixed when actors

decide on having a ties in B (A) 

Snijders et al. (2010)

Steglich & Knecht (2010)

Ripley et al. (2014)

Prof. Dr. Michael Windzio

t 1 t 2

friendship

advice
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multiplex.R
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Theory of networks. Small worlds and scale 

free networks

Prof. Dr. Michael Windzio
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• A realization of a network in a set of nodes describes the structural form of ties between these 

nodes.

• Depending on the structural form, networks have specific characteristics / properties, e.g. 

centralized star, ring, degree of clustering or the mean geodesic (shortest path.)  

• Here, distance is not a spatial term, but steps or path length.  

• Nevertheless, spatial distance often correlates with distance in a network.

• But since Milgram’ s (1967) experiments, we talk about “small worlds” (Watts 2003) and “power 

law” (Barabási 2003) networks (scale-free networks). 

a)

b)

a) < b)

a) b)

a) > b)

Theory of networks (Watts 2004, Barabási 2003)

Prof. Dr. Michael Windzio

clustering coefficient

The share of ties among ego‘s alteri

Average „shortest path length“ (geodesic):

If ego want‘s to reach alter via the shortest path: how many steps does he / she need when using the 

shortest path? 
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high clustering

low clustering

low mean geodesic

High mean geodesic
Two random aquaintances can have extrem 

effects on the mean geodesic. Properties of 

the network change fundamentally

Drastic change in network properties- how 

does this occur?

two basic concepts in the small world theory

1. clustering 2. average geodesic

Theory of networks (Watts 2004, Barabási 2003)
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complex systems usually have a specific structure. How are their elements connected with each other? 

They are often „small worlds“: high degree of clustering, but nevertheless low average geodesic.  

Social Networks: 

„There are only  six degrees of separation” between two persons in an social network (in the U.S.? The 

World?). Stanley Milgram’s  (1967) experiment in the U.S. 

Internet:

A network where an enormous number of ties is related to a limited number of “hubs” (scale free 

network). 

Neuronal networks

Groups of neurons synchronize their electric discharge in changing constellations.  Each neuron is tied 

to any other via a small number of steps. Caenorhabditis elegans, 1 mm worm has only 292 neurons. 

It has the same feature of the more complex brain of a cat (or hopefully a university professor): 2-3 

degrees of separation, at the same time highly clustered. Elements of the neuro-system are can be 

connected extremely quickly, regardless of system size / the number of nodes. 

(Buchanan 2003: “Small Worlds and the groundbreaking

theory of networks“, p. 65pp)
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C. Elegans (easternct.edu)

http://nutmeg.easternct.edu/

~adams/C.elegansadvantages.html
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p=0 indicates perfect order. 

Each node is connected with 

his next two neighbors at both 

sides.

Now introduce some random 

“disorder” („randomly 

rewired“), until p=1 (complete 

random network). How do 

parameters C and L change?

C = Clustering: share of my friends who are connected among themselves 

L = Length: average minimum path distance (geodesic)

C(p)/C(0): (clustering at p) / (clustering at perfect order [p=0])

At perfect order, clustering is high (here = 1). The higher the number of 

randomly rewired edges, the smaller becomes L, but C remains at a high 

level. Not before 10% of ties are randomly rewired also the clustering rapidly 

decreases. 

In between: area of „Small World“ networks. 

at p=0 4 out of 6 possible ties are realized among ego‘s friends 
4

3)0( ≈C

area of „Small World“ networks. C remains high, L sharply decreases. 

Information, bus also infectious diseases can spread quickly through the system

Theory of networks (Watts 2004)
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• „Strength of weak ties“ (Granovetter 1973, AJS 78) needs specific network structure with 

desirable properties. 

• Quick spread of non-redundant information, from clusters “far away” from ego. 

• It is rather a “connected caveman graph” with small-world properties. 

• This is the way networks in urban areas are organized. Traditional idea, without modern 

network methods: Georg Simmel concept of cross-cutting “social circles”. 

isolated caveman graph connected caveman graph

Theory of networks (Watts 2004)
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Internet:

A network where an enormous number of ties is related to a limited number of “hubs” (scale free 

network). 
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number of ties number of ties
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small_world.R
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Thanks for listening and for your patience!
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